Worldwide Allele Frequencies of the Human Apolipoprotein E Gene: Climate, Local Adaptations, and Evolutionary History

Dan T.A. Eisenberg,1,2* Christopher W. Kuzawa,1,2 and M. Geoffrey Hayes1,3,4

1Department of Anthropology, Northwestern University, Evanston, IL 60208
2Cells to Society (C2S): The Center on Social Disparities and Health, Institute for Policy Research, Northwestern University, Evanston, IL 60208
3Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
4Center for Genetic Medicine, Northwestern University, Chicago, IL 60611

KEY WORDS cholesterol; metabolism; selection; population structure; HGDP-CEPH

ABSTRACT The e4 allele of the apolipoprotein E (APOE) gene is associated with increased cholesterol levels and heart disease. Population allele frequencies of APOE have previously been shown to vary, with e4 frequencies generally increasing with latitude. We hypothesize that this trend resulted from natural selection protecting against low-cholesterol levels. In high-latitude cold environments and low-latitude hot environments, metabolic rate is elevated, which could require higher cholesterol levels. To explore this hypothesis, we compiled APOE allele frequencies, latitude, temperature, and elevation from populations around the world. e4 allele frequencies show a curvilinear relationship with absolute latitude, with lowest frequencies found in the mid-latitudes where temperatures generally require less expenditure on cooling/thermogenesis. Controlling for population structure in a subset of populations did not appreciably change this pattern of association, consistent with selection pressures that vary by latitude shaping e4 allele frequencies. Temperature records also predict APOE frequency in a curvilinear fashion, with lowest e4 frequencies at moderate temperatures. The model fit between historical temperatures and e4 is less than between latitude and e4, but strengthened after correcting for estimated temperature differences during the Paleolithic. Contrary to our hypothesis, we find that elevation did not improve predictive power, and an integrated measure of the cholesterol effect of multiple APOE alleles was less related to latitude than was e4 alone. Our results lend mixed support for a link between past temperature and human APOE allele distribution and point to the need to develop better models of past climate in future analyses. Am J Phys Anthropol 143:100–111, 2010. ©2010 Wiley-Liss, Inc.

The apolipoprotein E (APOE) gene has been extensively studied in the biomedical literature, and its allele frequencies have been found to vary widely across population. The most commonly studied alleles/isoforms of APOE are e2, e3, and e4, which are determined by two single-nucleotide polymorphisms that cause amino acid substitutions and result in functional changes to the apoE protein (Mahley et al., 2000). The e4 allele of APOE has been associated with increased total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), whereas its e2 allele has been associated with similar-sized decreases in TC and LDL-C (relative to e3 homozygotes; Mahley et al., 2000; Bennet et al., 2007). A primary feature of apoE is its involvement in the transport and clearance of lipids, including LDL-C, high-density lipoprotein cholesterol (HDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG) (reviewed in Mahley et al. (2000)). APOE e4 has been associated with increased cholesterol absorption in some (Kesaniemi et al., 1987; Schayek et al., 2000; Tammi et al., 2000), but not all studies (Woollett et al., 1995; von Bergmann et al., 2003). Consistent with this, there is some evidence that carriers of the e4 allele show enhanced responsivity to dietary fats (Mason et al., 2003). In turn, e4 carriers face an increased risk for developing coronary heart disease (CHD; Bennet et al., 2007) and Alzheimer’s disease (Bang et al., 2003).

These broad and generally deleterious effects on health have raised questions about the relatively high frequency of the e4 allele in many populations. The APOE gene shows signs of positive selection in the human/chimp lineage (Vamathevan et al., 2008), pointing to the likely importance of phylogenetically recent selective pressures. Of the three common alleles of APOE, the e4 allele is ancestral, whereas the e3 allele is thought to have arisen within the last 220,000 years, and e2 was later derived from e3 (under a neutral model; Fullerton et al., 2000). It has been hypothesized that the e3 and e2 alleles may be adapted to meat eating and that they were related to lifespan extension and the capacity

*Correspondence to: Dan T.A. Eisenberg, Department of Anthropology, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208. E-mail: dtae@dtae.net

Received 24 October 2009; accepted 3 February 2010

DOI 10.1002/ajpa.21298
Published online 21 April 2010 in Wiley InterScience (www.interscience.wiley.com).
for intergenerational transfers (Finch and Stanford, 2004; Allen et al., 2005). It has also been noted that the ε4 allele is associated with improved perinatal health and survival outcomes (Nagy et al., 1998; cf. Wang et al., 2000; Zetterberg et al., 2002; Wright et al., 2003; Becher et al., 2006; Gaynor et al., 2007), which might act to maintain the ε4 allele despite its later life deleterious effects.

Although providing some possible insights into APOE function and evolution, these hypotheses fail to address a key feature of the genetic polymorphism—the tendency of ε4 allele frequency to vary by latitude. Past work suggests that ε4 allele frequency increases with latitude in Eurasia and North America but decreases moderately with latitude in Africa (Gerdes et al., 1992; Singh et al., 2006; Borinskaya et al., 2007). These past studies did not consider the potential role of population structure and, thus, do not speak to possible nonadaptive evolutionary explanations for the gradient. Nonetheless, adaptive evolutionary processes that might explain the worldwide allele distribution of APOE have long been and remain a source of broad speculation (e.g., Sing and Davignon, 1985; Corbo and Scacchi, 1999; Martin, 1999; Gerdes, 2003; Han, 2004. p. 1900; Allen et al., 2005; Prentice et al., 2005; Singh et al., 2006; Borinskaya et al., 2007; Finch, 2007, p. 361; Austad and Finch, 2008; Reser, 2009).

In the light of the latitudinal gradient, prominent hypotheses have pointed to climate as a driver of selection on the ε4 allele. Although they do not propose a specific mechanistic link, Borinskaya and colleagues (2007) suggested that the latitudinal gradient of ε4 in Eurasia could indicate selection for higher cholesterol levels in northern latitudes, where energy expenditure in both human populations and other animals are known to be higher (Lovegrove, 2003; Froehle and Schoeninger, 2006). In fact, there are good reasons to suspect such a link. TC levels scale to body mass across a wide range of mammals in a fashion similar to resting metabolic rate (Kuzawa et al., 2006), while mass-specific LDL-C turnover and synthesis rates are inversely related to body mass across several species (Dietschy et al., 1993; Dietschy and Turley, 2004). Cholesterol’s involvement in cell proliferation (Cuthbert and Lipsky, 1987) and tissue growth (Schoknecht et al., 1994; Edison et al., 2007; Pond et al., 2008) corresponds to an increasing demand for cholesterol as elevated metabolic rates cause more rapid tissue turnover (Hulbert and Else, 2004).

Human studies in populations, varying in ecology and temperature, find evidence for a link between metabolic rate and cholesterol levels. Among native Siberians with basal metabolic rates (BMR) elevated above fat-free mass standards, BMR was inversely related to LDL-C levels (Leonard et al., 2008). The Pima of Arizona, United States, and Sonora, Mexico have low-BMRs and elevated cholesterol levels, and native Siberian populations with elevated BMRs have low-cholesterol levels (TC and LDL-C) (Leonard et al., 2008). Similarly, members of the US Navy subsisting on a standard diet increased their usual cholesterol consumption during temporary residence in Antarctica (Harford et al., 1993), perhaps indicating increased intake to compensate for increased cholesterol turnover and demand. These examples are consistent with the idea that high-metabolic rates and cellular turnover can strain the pool of circulating cholesterol in humans.

Higher demands for cholesterol with elevated metabolic rate might drive selection for higher circulating cholesterol concentrations, and thus, the ε4 allele. Indeed, very low-cholesterol levels could have broad and adverse functional and health impacts. In addition to its role as a membrane component (particularly in the central nervous system), cholesterol also serves as the precursor for steroid hormones (Dietschy and Turley, 2001; Vance et al., 2005). Lowered cholesterol levels are also likely to decrease the blood carrying capacity for fat-soluble vitamins, especially, vitamin E (Linton et al., 1993), and cholesterol appears to help maintain robust immune responses [reviewed in Jacobs and Iribarren (2000) and Muldoon et al. (1997)]. Low cholesterol has been related to altered cerebral development (Schoknecht et al., 1994; Pond et al., 2008), lower intelligence (Benton, 1995; Elias et al., 2005), and poorer memory (Henderson et al., 2003). In a piglet growth model, higher dietary cholesterol was associated with improved weight gain (Schoknecht et al., 1994).

Consistent with the idea that low-cholesterol levels can impair biological function, statins, a class of cholesterol lowering drugs, have been associated with decreased adrenal and sex steroid hormone levels, increases in corresponding stimulatory hormones [LH, FSH, and ACTH; reviewed in Kanat et al. (2007)] and decreased vitamin E levels (Galli and Iuliano, in press). Furthermore, low-cholesterol levels have been associated with decreased reproductive function in boids (Anand and Prakash, 2008) and adverse birth outcomes in women (Edison et al., 2007). In addition, there is evidence that hypcholesteremia is associated with increased aggression, suicide, and accidents as well as decreased affiliative behavior (Kaplan et al., 1997; Lester, 2002; Zhang et al., 2005; Civulek et al., 2007; Lalovic et al., 2007). Cholesterol-lowering therapy among individuals with low-CHD risk has been associated with increased mortality rates (Smith et al., 1993). Consistent with this, low cholesterol has been associated with poorer recovery from physical disabilities (Onler et al., 2006), increased nonatherosclerotic deaths (Song et al., 2000), and increased all-cause mortality in prospective studies (Melton et al., 2006).

Although data are scarce, modern populations that subsist on wild game and foraged foods, as well as transitioning horticulturalists, have been found to have low-cholesterol levels compared to populations consuming a Western or higher fat diet (Miller et al., 1968; Mancilha-Carvalho and Crews, 1990; Kesteloot et al., 1997), suggesting that ancestral populations subsisting on similar foods were more likely confronted with low-cholesterol levels than the high levels typical of many contemporary societies. In light of the deleterious effects of very low cholesterol, environmental or climatic conditions that imposed especially high demands for circulating cholesterol could have selected for individuals with ε4 alleles, increasing ε4 frequencies in these populations.

Building from past work on APOE allele distributions in human populations, we seek to clarify the nature of this distribution and to evaluate the potential role of temperature as a selection pressure on this polymorphism. First, we evaluate the relationship of ε4 with latitude using an expanded dataset of APOE frequencies. Next, we used genome-wide data on a subset of populations [Human Genome Diversity Project (HGDP) populations] to see if APOE allele frequency trends are consistent with population structure, as an alternative to a
selection-based hypothesis. Finally, we examine associations with historical temperature, elevation, and other APOE alleles to more rigorously assess the role that temperature, as a proxy for metabolic rate, might have played in the evolution of the APOE polymorphism in modern humans.

We use these data to test the following hypotheses: [H1] ε4 allele frequency is increased in latitudes associated with higher metabolic rates; [H2] the worldwide distribution of ε4 frequencies is independent of population structure, thus supporting the idea that natural selection has created the latitudinal gradient. Under the assumption that metabolism is driving demand for higher cholesterol levels, we further hypothesize that [H3] temperature is more closely related to ε4 frequency than latitude and that [H4] increasing elevation, which causes colder temperatures, will also be associated with ε4 frequency. Because the locus under study is actually composed of three common alleles that influence cholesterol levels, we further predict [H5] that combining these alleles into one measure reflective of their association with cholesterol levels will reveal an even stronger association of APOE with absolute latitude than ε4 alone.

METHODS
Genetic dataset

Data on population APOE allele frequencies include those populations compiled by Singh and colleagues (2006), which were expanded in several ways: 1) we searched for allele frequencies in the ALFRED database posted as of 12/23/2007, 2) some errors in the preexisting dataset were corrected (e.g., geographical coordinates were made more specific/corrected, clinical populations were excluded), 3) elderly populations (mean age >65) were removed from all analyses because of past findings of decreasing ε4 alleles in elderly populations suggesting survival bias [reviewed in Smith (2002)], 4) ethnically heterogeneous populations were removed from all analyses, 5) ε4 allele frequencies (but not ε2 or ε3 frequencies, which were unavailable) from 53 populations (1,038 individuals) from the Human Genome Diversity Cell Line Panel (HGDP-CEPH; Cann et al., 2002) were added (Serre, 2008, personal communication; Serre et al., 2008), and 6) allele frequencies from new sources encountered in the course of research were added. Allele frequencies were selected without regard to genotyping methods, which included both direct genotyping and protein phenotyping methods. This is consistent with the previous worldwide analysis by Singh et al. (2006) and a meta-analysis by Bang et al. (2003). Furthermore, Song et al. (2004) showed that genotyping method had no effect on the conclusions reached by their meta-analyses of APOE effects.

Because recent migrants (generally resulting from colonial era population movements) to an area are not expected to have had enough time to genetically adapt to match the local optimum, they were excluded from all analyses. Where ethnicity was a clear signal of recent colonial or postcolonial era movements (e.g., white South Africans), such samples were excluded from the analysis. Otherwise, ethnicity was not considered, except to mark distinct populations from the same locale as independent populations [e.g., Mexican Huicholes and Coras from the same location in Cruz-Fuentes et al. (2005)]. Clinical samples were excluded from all analyses, although randomly selected and healthy controls were included unless the healthy controls were selected for low-cholesterol levels. If two studies of the same population were available, only the one with the greater geographical specificity or larger sample size was included. Latitude and longitude coordinates for every population were determined from Google Earth and other maps.

Population structure control

The HGDP dataset (Cann et al., 2002) was used to control for possible influences of population structure on APOE ε4 allele frequency. Genotype data from the 660,918 markers derived from the HumanHap650Yv3 genotyping BeadChip (Illumina) were downloaded from CEPH (Human Genome Diversity Project, 2007). Plink version 1.05 (Purcell et al., 2007) and GLU version 1.0a5 (Jacobs, 2008) were used to manipulate the genotype data. The smartpca module of Eigensoft (version 2.0) was used for principal component analysis (PCA). We excluded sex chromosome and mitochondrial markers from being input into the PCA, leaving a total of 644,258 markers from which we derived the first 11 principal components (PCs). First, individuals were entered into the model, and then eigenvalues for each PC were averaged inside each population to create population level eigenvalues for each PC. We used the default control for linkage disequilibrium (LD) between two adjacent markers (Patterson et al., 2006; using values of 1, 3, and 4 yielded similar results). We used available data for the individuals recommended in the Rosenberg et al. “H971” subset of HGDP (2006), which excludes first degree relatives and obviously faulty samples. The Karitiana and Surui HGDP populations from South America have been noted as potentially problematic because of both a high degree of relatedness (Rosenberg, 2006) and being identified as outliers (Rosenberg et al., 2005). The Maya samples likely have substantial admixture (Rosenberg et al., 2005). Our analysis similarly showed the American populations as distinct, and because after the exclusion of the above three populations only two HGDP populations remained in the Americas, we excluded the Americas from the PCA. Populations with sample sizes less than or equal to five were also excluded from the PCA and regression analyses (San and Southern Bantu populations). In the primary analysis, the two populations from Oceania were excluded, because they were frequently outliers in PCAs and the small number of populations (two) in the sample from this ecologically distinct region of the world. After these exclusions, in the primary PCA analysis, there was no exclusion of individuals because of outlier eigenvalues. The final sample size was 845 individuals from 43 populations. In Supporting Information 1 and 2, two additional PCAs were conducted under slightly different parameters with generally similar results as those shown below.

Temperature and elevation dataset

An index of temperature histories was derived from the program GlobalTempSim Ver. 0.9 (Spokas, 2007). This program predicts average low and high-surface air temperatures for each day of the year for a specific geographical location based on 30 years (1961–1990) of worldwide temperature records. To reduce error, temperature data were retrieved in one batch using a custom-
ization of the GlobalTempSim program (customization programmed by James DeVona). Predicted low and high-air temperatures were averaged together and then averaged across all days of the year to derive a mean yearly surface air temperature for each location. We also calculated temperature variability by calculating the difference between the average high-daily temperature and average low-daily temperature as a measure of short-term temperature variability. By subtracting the lowest predicted temperature day of the year by the highest predicted temperature day, we derived an index of yearly temperature range (or seasonality).

Selection on the APOE locus likely occurred over many thousands of years, whereas our temperature data are from recent historical records. In an effort to correct recent temperature predictions for climatic differences in the past, we used two correction factors. The temperatures during the last glacial maximum (LGM), about 20,000 years ago, were characterized by a relatively greater latitudinal temperature gradient than today (Toracinta et al., 2004). That is, during the Pleistocene, while temperatures were colder globally, this cooling was greater at the poles than in the tropics. We corrected for this using estimates from different paleo-climate models. Specifically, we used the “Climate: Long-range Investigation, Mapping and Prediction study” (CL) model and an average (CL-AVG) of the CL, modified CL, and proxy models (Toracinta et al., 2004, p. 519). The mean yearly temperature variable used above was adjusted using the CL and CL-AVG models. For populations between 20°N and 20°S latitude 1.3°C was subtracted from the mean yearly temperature for the CL model and 3.73°C for the CL-AVG model. For populations between 20° and 40° latitude, 2.7°C and 4.63°C was subtracted. Finally, for those populations with latitudes greater than 40°, 7.1°C or 8.4°C was subtracted (for CL and CL-AVG, respectively).

Elevation data were retrieved from the USGS Seamless Elevation data sets (2008), using the highest-resolution data available and if not available there by consulting Google Earth. To reduce error, elevation data were retrieved in one batch from the USGS using a custom computer program (programmed by Jim DeVona (2008)).

Analytical method

In addition to using simple APOE allele frequencies, a combined measure (APOE-index) was constructed such that the approximate relative effects on cholesterol profiles are considered (Bennet et al., 2007), specifically: APOE index = e4 frequency – e2 frequency. Because e2 and e4 have approximately equal and opposite magnitude effects on cholesterol levels (relative to e3) and exhibit an additive dose-response pattern, the APOE-index approximates the phenotypic effect of the APOE locus on population level lipid phenotypes (LDL, HDL, TC, and VLDL; Mahley et al., 2000). If APOE’s influence on cholesterol levels are in fact under simple and linear selection and mating is random with respect to APOE genotype, this index should encompass the relevant functional variation better than considering the allele frequencies individually. Higher values on this index should approximate higher population level serum cholesterol levels. Only e4 frequencies were available for the HGDP sample, so the APOE-index could not be constructed for these populations nor could the HGDP populations be included in secondary analysis of e2 and e3 allele frequencies (Table 5, models 2–4). Allele frequencies, mainly of e4, are considered as the outcome variables in OLS regression models run in STATA/IC 10 with an alpha of 0.05. All models were tested for heteroscedasticity using the Breusch–Pagan/Cook–Weisberg test and calculated with robust standard errors as indicated.

RESULTS

Description of dataset and variables

Our literature search yielded a dataset containing allele frequencies from 430 populations. Of those, 321 met the inclusion criteria (see methods) and 268 of these were unique populations used for the remainder of the analysis (median population sample size of 94 individuals; range of 8–3,067 individuals per population; and total number of subjects across all 268 studies was 61,035). The locations and e4 allele frequencies of these 268 populations are shown in Figure 1. Forty-three of these are HGDP populations with genome-wide marker data, which permit us to control for population structure. However, these HGDP populations only have allele frequencies for e4 and are missing data for the e2 or e3 alleles. The remaining 225 populations are considered “non-HGDP” populations. When possible, all 268 populations were analyzed together, but some analyses were limited to only HGDP or non-HGDP populations as noted below. Descriptions of the key genotype and environmental variables are given in Table 1 and their Pearson’s pairwise correlations in Table 2. Absolute latitude was significantly correlated with all the climate variables and often strongly so.

Hypothesis testing

H1: e4 allele frequency is increased in latitudes associated with higher metabolic rates. It has long been observed that e4 allele frequencies increase with latitude (Gerdes et al., 1992), although a more recent analysis showed more ambiguous global patterns (Singh et al., 2006). Graphical analysis of our expanded dataset revealed that the relationship between latitude and e4 frequencies is instead curvilinear (see Fig. 2). We modeled the curvilinear relationship by including both latitude and squared latitude terms in regression models (Table 3, models 1, 6, and 7; Tables 4 and 5). Population e4 allele frequencies first decrease with distance from the equator, reach an inflection point (nadir) at roughly 35°, and increase again at higher latitudes (Table 3, model 1; Fig 2). The curvilinear relationship is consistent with the hypothesis that higher metabolic rate has selected for the e4 allele: metabolic rates are lowest in moderate climates, but increase in high temperatures as well as low temperatures (reviewed below in discussion).

H2: The association of e4 with absolute latitude is not due to underlying population structure (and thus likely due to natural selection). The association between e4 and absolute latitude might be an artifact of human population histories rather than selection. Using the non-HGDP dataset, we controlled for the effect of world region, and the association with absolute latitude was little changed (Table 4, model 1 compared to model 2). To more rigorously assess whether the latitudinal gradient of e4 is due to nonselective factors, we considered population structure using PCA across genome-wide data from 845 individuals from the 43 HGDP populations (see Methods section). This subset of HGDP populations had a relationship between e4 and absolute
latitude that was similar to the remaining 225 non-HGDP populations (Fig. 2; Table 4, compare model 1 to model 3). Each PC represents a different underlying statistical construct reflecting shared population covariance evaluated across the 644,528 polymorphisms examined. As consistently observed in other studies using this method (Cavalli-Sforza, 2005; Lopez Herraez et al., 2009), the first two PCs accounted for the largest proportion of the shared variance in allele frequencies, with each subsequent component contributing only minimally. These first two components were included in a regression model in an effort to see if the pattern of association between e_4 and latitude was thereby changed (Table 4, model 4). The first four PCs are included heuristically (Table 4, model 5), and finally only those PCs significantly related to e_4 frequency in pairwise correlations (PC1: $r = 0.41$, $P = 0.007$; PC5: $r = -0.31$, $P = 0.041$; PC11: $r = -0.31$, $P = 0.041$) were included (Table 4, model 6). Although P values of absolute latitude and latitude-squared did increase when controlling for population structure, the beta values and inflection points remained little changed. Given the small sample size and increased degrees of freedom when introducing population structure controls, increased P values are not surprising. The results suggest that population variation in e_4 frequency is not a reflection of population structure and was instead likely shaped by selection.

H3: Temperature will be a stronger predictor of e_4 frequency than latitude. We predicted that the measure of average temperature would be a better proxy for temperatures during our evolutionary past than absolute latitude and thus a better predictor of metabolic rate and e_4 frequency. As apparent from comparing Figures 2 and 3 and corroborated by regression analyses (Table 3, model 1 compared to model 2), latitude is a stronger predictor of e_4 frequency than is temperature. As a result of this finding contrary to our expectation, we explored some reasons why these data, reflecting the average interpolated yearly temperatures derived from data from 1961 to 1990, might be a weak predictor of past metabolic demands of the climate. Using corrections for differences in climate during the LGM (see Methods section), we found that the models improved substantially.

TABLE 1. Descriptive statistics for key dependent and independent variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_2 (%) frequency</td>
<td>225</td>
<td>6.4</td>
<td>5.1</td>
<td>0.0</td>
<td>37.5</td>
</tr>
<tr>
<td>e_3 (%) frequency</td>
<td>225</td>
<td>78.3</td>
<td>12.1</td>
<td>8.5</td>
<td>98.0</td>
</tr>
<tr>
<td>e_4 (%) frequency</td>
<td>268</td>
<td>14.5</td>
<td>8.5</td>
<td>0.0</td>
<td>49.0</td>
</tr>
<tr>
<td>APOE-index</td>
<td>225</td>
<td>8.1</td>
<td>9.6</td>
<td>-25.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Mean temp (°C)</td>
<td>267</td>
<td>14.6</td>
<td>9.3</td>
<td>-11.6</td>
<td>28.5</td>
</tr>
<tr>
<td>Yearly temp range (°C)</td>
<td>267</td>
<td>27.7</td>
<td>10.8</td>
<td>8.5</td>
<td>65.2</td>
</tr>
<tr>
<td>Daily temp range (°C)</td>
<td>267</td>
<td>10.5</td>
<td>2.8</td>
<td>1.9</td>
<td>19.7</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>268</td>
<td>502.9</td>
<td>681.0</td>
<td>0.0</td>
<td>4139.0</td>
</tr>
</tbody>
</table>

a N, number of populations (not number of individuals).

b APOE-index = e_4 frequency − e_2 frequency. The index should approximate the effect of the APOE locus on cholesterol levels.

Fig. 1. Map of populations used in analyses. Each pie chart is a population-specific allele frequency estimate for e_4. The colored pie charts represent HGDP populations, with red representing percent e_4. The black and white pie charts are non-HGDP populations with black representing percent e_4.

Fig. 2. e_4 allele frequencies (Y axis) by absolute latitude (X axis). Red filled in circles/squares represent HGDP populations, and black-opened squares/circles are non-HGDP populations. Squares are populations South of the Equator, and circles are North of the Equator. Curved lines are quadratic best fit lines. Red solid curve is for HGDP populations and black-dashed curve is for the non-HGDP populations. See Table 4, models 1 and 3 for equations of curves.
TABLE 2. Pairwise Pearson correlations between key dependent and independent variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>ϵ2</th>
<th>ϵ3</th>
<th>ϵ4</th>
<th>Index</th>
<th>Temp</th>
<th>ytempb</th>
<th>dtempb</th>
<th>Elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ2 (% frequency)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ3 (% frequency)</td>
<td>-0.46</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϵ4 (% frequency)</td>
<td>-0.68</td>
<td>-0.68</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APOE-index</td>
<td>-0.47</td>
<td>-0.36</td>
<td>0.85</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean temp (°C)</td>
<td>0.09</td>
<td>-0.10</td>
<td>0.07</td>
<td>0.02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yearly temp range (°C)</td>
<td>-0.16</td>
<td>0.24</td>
<td>-0.27</td>
<td>-0.17</td>
<td>-0.63</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily temp range (°C)</td>
<td>-0.11</td>
<td>-0.03</td>
<td>0.00</td>
<td>0.11</td>
<td>0.31</td>
<td>0.23</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>-0.10</td>
<td>-0.01</td>
<td>0.05</td>
<td>0.14</td>
<td>-0.06</td>
<td>0.02</td>
<td>0.44</td>
<td>1</td>
</tr>
<tr>
<td>Absolute latitude</td>
<td>-0.02</td>
<td>0.19</td>
<td>-0.26</td>
<td>-0.24</td>
<td>-0.85</td>
<td>0.59</td>
<td>-0.42</td>
<td>-0.24</td>
</tr>
</tbody>
</table>

a Bolded correlation coefficients have \(P < 0.05 \).
b ytemp stands for yearly temperature range and dtemp for daily temperature range.
c Absolute latitude is the number of degrees north OR south of the equator.

TABLE 3. Primary regression output

<table>
<thead>
<tr>
<th>Model number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model description</td>
<td>Baseline</td>
<td>Temp</td>
<td>Temp CL</td>
<td>Temp CL-AVG</td>
<td>Temp + range</td>
<td>Lat + range</td>
<td>+Elevation</td>
</tr>
<tr>
<td>Absolute latitude</td>
<td>-0.011***</td>
<td>-0.011***</td>
<td>-0.010***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude²</td>
<td>0.00015***</td>
<td>0.00015***</td>
<td>0.00012***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature (Kelvin)</td>
<td>-0.101*** -0.094*** -0.074*** -0.159***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature²</td>
<td>0.00018*** 0.00017*** 0.00013*** 0.00027***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature: mean daily range</td>
<td>0.008*</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature: yearly range</td>
<td>-0.005***</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.297*** 14.500*** 13.240*** 10.711*** 23.527*** 0.276*** 0.317***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection point (nadir)</td>
<td>36.7°C 10.79°C 6.66°C 16.40°C 19.75°C 35.25°C 40.7°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>268</td>
<td>267</td>
<td>266</td>
<td>266</td>
<td>267</td>
<td>267</td>
<td>268</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.392*</td>
<td>0.392*</td>
<td>0.038</td>
<td>0.063</td>
<td>0.109</td>
<td>0.199</td>
<td>0.392</td>
</tr>
<tr>
<td>0.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a All models are heteroscedastic and calculated with robust standard errors; models 2 and 5 use mean annual temperatures based upon climate records from 1961 to 1990; model 3 modifies temperatures in model 2 with the CL-AVG correction for the last glacial maximum; model 4 uses the CL-AVG correction for the last glacial maximum; *\(P < 0.05 \), ***\(P < 0.001 \).
b Model 7 adjusts absolute latitude by elevation. In a regression model predicting mean annual temperature, the coefficient of elevation (in meters) is 0.82% of the coefficient of absolute latitude (in degrees). As a result, latitude is adjusted by adding 0.82% of the elevation of the location.
c Absolute latitude is the number of degrees north OR south of the equator.
d Infection point of latitude or temperature predicting APOE allele frequencies in curvilinear models; infection points in models 1, 6, and 7 are in degrees absolute latitude; infection points in models 2–5 are in temperature (°C).
e Nonadjusted \(R^2 = 0.397 \).

TABLE 4. Regressions assessing population structure

<table>
<thead>
<tr>
<th>Model number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model description</td>
<td>Non-HGDP</td>
<td>Non-HGDP</td>
<td>HGDP</td>
<td>HGDP + PCA</td>
<td>HGDP + PCA</td>
<td>HGDP + PCA</td>
<td>Non-HGDP ϵ2</td>
</tr>
<tr>
<td>Absolute latitude</td>
<td>-0.011*** -0.009*** -0.011*** -0.009</td>
<td>-0.010</td>
<td>-0.008*</td>
<td>-0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Latitude²</td>
<td>0.00015*** 0.00013*** 0.00017*** 0.00014*</td>
<td>0.00015</td>
<td>0.00010</td>
<td>0.00001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>0.017**</td>
<td>0.017**</td>
<td>0.017**</td>
<td>0.014*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>-0.054***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South America</td>
<td>0.031</td>
<td>0.031</td>
<td>0.031</td>
<td>-0.056***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>0.066***</td>
<td>0.066***</td>
<td>0.066***</td>
<td>0.031*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>0.162***</td>
<td>0.162***</td>
<td>0.162***</td>
<td>0.035</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td>0.420</td>
<td>0.420</td>
<td>0.420</td>
<td>0.140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC2</td>
<td>0.439</td>
<td>0.439</td>
<td>0.439</td>
<td>0.140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td>0.136</td>
<td>0.136</td>
<td>0.136</td>
<td>0.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC4</td>
<td>-0.146</td>
<td>-0.146</td>
<td>-0.146</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC5</td>
<td>-0.018</td>
<td>-0.018</td>
<td>-0.018</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC11</td>
<td>-0.524</td>
<td>-0.524</td>
<td>-0.524</td>
<td>-0.524</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.298*** 0.226*** 0.302*** 0.256</td>
<td>0.268* 0.269*** 0.071***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection point (nadir)</td>
<td>36.9°C 34.01°C 34.21°C 32.1°C</td>
<td>32.77°C 38.75°C 38.06°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>225</td>
<td>225</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>225</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.417</td>
<td>0.518</td>
<td>0.285</td>
<td>0.255</td>
<td>0.216</td>
<td>0.322</td>
<td>0.282</td>
</tr>
</tbody>
</table>

a Models 1, 2, and 7 are heteroscedastic and run with robust standard errors, whereas models 3–6 are homoscedastic; models 1 and 2 are run on non-HGDP populations only, whereas models 3–6 are run on HGDP populations only; model 2 controls for world-region with an out-group of Asia; model 7 is this same as model 2, but the dependent variable is \(ϵ2 \) rather than \(ϵ4 \); *\(P < 0.05 \), **\(P < 0.01 \), ***\(P < 0.001 \).
b Infection point of latitude predicting APOE allele frequencies in curvilinear models.
TABLE 5. Regressions examining different APOE alleles correlated with latitude*

<table>
<thead>
<tr>
<th>Model number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model description</td>
<td>ϕ_4</td>
<td>APOE-index</td>
<td>ϕ_2</td>
<td>ϕ_3</td>
</tr>
<tr>
<td>Absolute latitude</td>
<td>-0.011***</td>
<td>-0.011***</td>
<td>-0.000</td>
<td>0.010***</td>
</tr>
<tr>
<td>Latitudea</td>
<td>0.00015***</td>
<td>0.00015***</td>
<td>0.00000</td>
<td>-0.00015***</td>
</tr>
<tr>
<td>Constant</td>
<td>0.298***</td>
<td>0.229</td>
<td>0.069</td>
<td>0.642***</td>
</tr>
<tr>
<td>Inflection Point (nadir)b</td>
<td>36.9</td>
<td>36.84</td>
<td>38.78</td>
<td>37.37</td>
</tr>
<tr>
<td>Observations</td>
<td>225</td>
<td>225</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.417</td>
<td>0.301</td>
<td>-0.008</td>
<td>0.165</td>
</tr>
</tbody>
</table>

*a All models besides model 4 are heteroscedastic and calculated with robust standard errors; all models use only populations for which allele information for ϕ_2, ϕ_3, and ϕ_4 are available; model 8's dependent variable is ϕ_4, model 9's is the combined APOE-index, model 10's is ϕ_2, and model 11's ϕ_3; *** $P < 0.001$.

*b Inflection point of latitude predicting APOE allele frequencies in curvilinear models.

H4. Increasing elevation, by causing colder temperatures, will be associated with ϕ_4 allele frequencies. To further examine the hypothesis that increasing metabolic rate drives increasing ϕ_4 allele frequencies, we examined the association between elevation and ϕ_4 frequencies. Based on the curvilinear association between ϕ_4 and absolute latitude and the fact that high temperatures as well as low temperatures increase energy expenditure, modeling the effects of elevation on ϕ_4 frequencies is a complex matter. For example, in low latitudes, the cooling effect of increasing elevation on temperature is expected to decrease metabolic rate up to a certain elevation, above which cold temperatures will increase requirements for thermogenesis and increase metabolic expenditure. That is, the thermoneutral zone is contingent not just upon latitude, but also elevation.

To evaluate the possible moderating influence of elevation, we constructed an index which puts elevation on the same scale as latitude by incorporating the effect of elevation on temperature. First, a multivariate regression model was used to compare the effects of absolute latitude and elevation on mean annual temperature across the locations used in this study. Both latitude and elevation were highly significantly related to temperature ($P < 0.001$), and the beta-coefficient of elevation (in meters) was 0.82% of the beta-coefficient of absolute latitude (in degrees latitude; model not shown). In other words, a one meter increase in elevation is equivalent in effects on temperature change to a 0.082º latitude increase. Based on these results, an index of absolute latitude and elevation was created as follows: index = absolute latitude + 0.0082 * elevation. This index estimates the expected effect of elevation on average yearly temperature for given latitude by putting elevation on a latitudinal scale. A squared term of the index was also created to model the expected curvilinear relationship between temperature/latitude and metabolic rate. This model fit by more accurately predicting the temperature relevant metabolic expenditure at each location. Contrary to this expectation, the results showed that the adjusted latitude and yearly temperature variability are directly correlated (Table 2; $r = 0.59$, $P < 0.0001$)—higher latitudes have higher yearly temperature ranges. However, this association between latitude and yearly temperature range is considerably more marked at latitudes below 35º ($r = 0.84$, $P < .0001$; >35º: $r = 0.14$, $P = 0.10$). Together, this suggests that the relationship between absolute latitude and ϕ_4 worldwide incorporates the association between ϕ_4 and temperature variability.
R^2 decreased after the inclusion of elevation in the model (Table 3, model 1 compared to model 7). Reasons for this result, including adaptations to hypoxia, are discussed below in the discussion.

H5: A combined APOE measure, more strongly predictive of cholesterol levels, will be more strongly related to latitude than $e4$ alone. If cholesterol levels are the selectively relevant phenotype, there is reason to expect that a combined index of APOE alleles that considers the effects of all alleles on cholesterol simultaneously, rather than one at a time, will be more closely related to climate variables than the allele frequency of any one allele. That is, because $e2$ is associated with decreased cholesterol levels and $e4$ increased cholesterol levels (both relative to $e3$) in an allele dose-response manner (Bennet et al., 2007), the combined allele frequencies of $e2$ and $e4$ should more closely approximate the effect of APOE on cholesterol levels. Contrary to this, $e4$ was more closely related to absolute latitude than the combined APOE index (Table 5, model 2 compared to model 1; using only non-HGDP populations). Similarly, $e2$ and $e3$ allele frequencies were also less strongly related to latitude than was $e4$ (Table 5, models 3 and 4 compared to model 1). Post hoc analysis, aimed at finding the determinants $e2$ allele frequencies, suggests that 28% of population $e2$ allele frequency variability was accounted for by continental origin of the population (Table 4, model 7).

DISCUSSION

Our results suggest strong geographical patterning of $e4$ allele frequencies that does not mimic population structure. With respect to absolute latitude, $e4$ frequencies show a curvilinear relationship with a high frequency near the equator, decreasing to a nadir in mid-latitudes (about 35°) and then increasing again closer to the poles (see Fig. 2). Because metabolic rates are elevated in hot and cold environments, this pattern is broadly consistent with the hypothesis that elevated metabolic rate has selected for the $e4$ allele. The associations of $e4$ with temperature and elevation as well as the association of other APOE alleles with latitude provide mixed support for our primary hypothesis. First, contrary to our expectations, absolute latitude was a stronger predictor of $e4$ frequencies than was temperature. Using a correction factor that compensates for temperature changes during the Pleistocene roughly doubled the explanatory power of temperature, hinting at limitations of using historical records to infer selective processes that occurred over longer timescales. Second, including the effects of elevation on climate, in addition to latitude, did not improve the variance explained in $e4$ frequencies. Finally, adding consideration of the phenotypic effect of the $e2$ allele, which reduces cholesterol levels, and thus by our hypotheses should have been subjected to opposing gradients of selection did not improve the model fit with absolute latitude. Thus, our analyses provide mixed support for our hypothesis that temperature-driven differences in metabolic rate would have influenced requirements for cholesterol, thereby selecting for APOE alleles in human populations.

This is the first study to rigorously control for population structure while examining the worldwide patterning of APOE allele frequencies. Our results suggest that the observed association of $e4$ with latitude is not due to population structure and adds additional evidence that natural selection has shaped population differences in $e4$ frequencies.

$e4$ frequencies follow a curvilinear relationship with absolute latitude, consistent with the tendency for metabolic expenditure to be elevated in both hot and cold climates. For humans, the thermoneutral zone at rest with minimal clothing is between −25 and 31°C (77–89°F; e.g. Davis, 1964). $e4$ frequencies are lowest at 35° absolute latitude, corresponding to a mean annual temperature of 14°C (57°F). This seems a reasonable approximation of a thermoneutral temperature given that human populations were often physically active and used other means of staying warm such as clothing, fire, and dwellings. For example, one thick layer of clothing compensates for a 10°C decrease in temperature (Hassi et al., 2005), sufficient to decrease the thermoneutral zone from 25–31°C to 15–21°C (59–70°F). These behavioral means serve to broaden the effective thermoneutral zone, but primarily toward colder, not hotter temperatures. Thus, the curvilinear latitudinal gradient in $e4$ frequency and the latitudinal nadir of this gradient are consistent with the hypothesis that latitudes associated with high-metabolic rates would have selected for the $e4$ allele.

Consistent with the notion that high temperatures increase metabolism and thus demands for cholesterol, high-heat exposure in humans (39.8°C or 103.6°F) has been found to be associated with decreases in serum TC, LDL-C, and TG levels, consistent with the depletion of peripheral cholesterol stores (controlling for plasma volume; Yamamoto et al., 2003). However, other studies not controlling for plasma volume do not show this trend (Keatinge et al., 1986; Al-Harthi et al., 1990). Similarly, lactating cows show decreases in TC in hot periods of the summer (Abeni et al., 2007). In river buffalo in India, the hot humid season is associated with the decreased cholesterol and TG levels compared to the more mild winter months, which decrease the available substrate for ovarian steroidogenesis and result in low estrus behavior and conception rates at this time of year (Anand and Prakash, 2008). Thus, although relevant findings are relatively few, past studies suggest that extreme temperatures—whether hot or cold—can elevate metabolic rate and the demand for cholesterol in mammals, conditions that could select for the $e4$ allele.

Although our findings are generally supportive of an $e4$ gradient that parallels latitudinal changes in temperature, historical temperature records were a poor predictor of $e4$ compared to latitude alone. It is notable, however, that, for many populations, modern APOE allele frequencies will have been shaped by local selection operating over thousands of years or longer. Thus, historical temperature records, which reflect only the latest Holocene interglacial conditions, may be poor proxies for average temperatures experienced by populations over long time scales, given that glacial conditions have predominated in the Quaternary. For instance, during the LGM (~20,000 years ago), it is estimated that temperatures were ~7°C colder than present in regions greater than 40° latitude, whereas the equatorial regions (~20°N–20°S) were estimated to be only ~2°C colder (Toracinta et al., 2004). We adjusted our measure of historical temperatures for this and found that this correction improved the model fit substantially, roughly doubling the fraction of variance in $e4$ frequency explained. Our correction for past temperature was coarse and assumed uniform temperature changes within broad latitudinal belts. This assumption is unrealistic; climate change
exhibits strong regional variability and it is known, for instance, that the magnitude of glacial-to-interglacial temperature changes is modulated by factors such as proximity to oceans and ice sheets. The fact that our correction improved model fit, despite these limitations, provides an incentive to pursue improved strategies to model past temperature as a selective force on human populations. Factors that might be important to consider include locale-specific estimates of temperature history, the possible modulating influence of humidity, and population migratory history. In addition, if metabolic rate is a driver of cholesterol requirements, the strength of selection related to temperature might also be expected to vary by season, with strongest selection in the coldest winter months at high latitudes and strongest selection among heat-selected populations during months of maximal temperature.

Including the effect of elevation on temperature decreased the variance explained in \(\epsilon^4 \) frequency—contrary to what we predicted based upon the metabolic rate hypothesis (Table 3, model 7 compared to model 1). The reasons for this counter-intuitive result are not completely clear. One explanation is that daily temperature variability is greater at higher altitudes (Table 2; \(r = 0.44, P < 0.05 \)). Another possible explanation is that while elevation is inversely correlated with temperature, it is also related to atmospheric pressure, which engages another suite of selective pressures on human physiology. Adaptations to hypoxia are complex and have involved distinct mechanisms in different populations (Beall, 2007). Atthae (1985) suggested that hypoxia might account for differences in serum cholesterol levels observed in different populations in the Kirghiz Alpine. In some populations, increasing elevation has been related to increased HDL-C levels (Coello et al., 2000; Mohanna et al., 2006), while, in another, no difference in serum cholesterol levels were observed (Fiori et al., 2000), and one study found low levels of HDL-C in a high-altitude population (Bellido et al., 1993; cited in Mohanna et al. (2006)). Differential susceptibility of different \(\text{APOE} \) isozymes to oxidative stress (Leininger-Muller et al., 1998), which may increase with altitude (Askew, 2002) might also explain the results. Although it is difficult to parcel out the effects of cold, hypoxia, and variable nutrition across populations, diverse means of adaptation to hypoxia might differentially influence the fitness value of \(\epsilon^4 \).

Finally, if increased metabolic rate drives demands for cholesterol, we expect regions with higher metabolic rate not only to exert positive selection for the \(\epsilon^4 \) allele, which increases circulating cholesterol, but also to select against \(\epsilon^2 \), which is associated with lower cholesterol (Mahley et al., 2000; Bennet et al., 2007). In contrast to this expectation, \(\epsilon^2 \) frequency showed no linear or curvilinear association with absolute latitude (Table 5, model 3), nor did using a combined index of \(\text{APOE} \) allele frequencies scaled to the predicted effect on cholesterol levels (Table 5, model 2) show a stronger relationship with absolute latitude than \(\epsilon^4 \) alone (Table 5, model 1). This suggests that the \(\epsilon^2 \) allele distribution is explained by factors other than those that explain \(\epsilon^4 \). \(\epsilon^2 \) homozygosity is associated with increased TG levels (Bennet et al., 2007), which might cause different factors to be selectively relevant. Despite being generally associated with low cholesterol, \(\epsilon^2 \) homozygotes are also at increased risk for pathologically high-cholesterol levels, manifesting as part of a syndrome known as type III hyperlipoproteinemia (HLP) (Mahley et al., 2000). Type III HLP is likely caused by epistatic interactions or linkage of \(\epsilon^2 \) with rare genetic polymorphisms that vary by population (Fullerton et al., 2000; Mahley et al., 2000; Nickerson et al., 2000) and thereby changes the fitness value of \(\epsilon^2 \) in a complex and population dependent manner. It is also possible that \(\epsilon^2 \) frequencies vary for nonadaptive reasons as the result of drift or underlying population structure. Although we do not have the \(\epsilon^2 \) allele frequencies in the HGDP sample to test this hypothesis rigorously, continental origin accounts for 28% of the population variability in population level \(\epsilon^2 \) allele frequencies (Table 4, model 7).

Other factors besides metabolic rate should be explored to determine if they explain \(\text{APOE} \) allele frequencies. It has been proposed that \(\text{APOE} \) allele frequencies could be shaped by the selection for the \(\epsilon^4 \) allele due to protection it provides against infectious diseases (Martin, 1999; Wozniak et al., 2002, 2007; Oria et al., 2007). Others have argued that the \(\epsilon^4 \) allele was selected against, because it is a risk factor for other infections (Allen et al., 2005; Ewald, 2008). A few studies have found associations between malaria susceptibility and the \(\text{APOE} \) locus studied here, but the results have not been consistent (Wozniak et al., 2003; Aucan et al., 2004; Vignali et al., 2008). \(\text{APOE} \) genotypes have also been found to correlate with the severity of symptoms of infections, but again studies are sparse and not wholly consistent (Corder et al., 1998; Wozniak et al., 2002; Izthaki et al., 2004; Oria et al., 2005; Burt et al., 2008). As a result, these studies do not yet yield coherent predictions for comparative analyses.

Because distinguishing between these hypotheses more definitively will require rigorous empirical analysis, beyond the scope of the current analysis, using additional environmental/cultural variables, the dataset used to conduct the present analysis is made available as Supporting Information 3. Fruitful avenues of future analysis might include generating more fine scaled population-specific paleo-climate estimates, examining the worldwide distribution of other genetic polymorphisms related to cholesterol function, using indices of environmental pathogen loads (Murray and Schaller, 2010), and/or controlling for dates of origin of agriculture and animal domestication [as in Putterman (2008)] or subsistence strategy [as in Porter and Marlowe (2007)] to see if dietary stability or population density explain \(\text{APOE} \) distributions.

ACKNOWLEDGMENTS

Thanks to Bill Leonard, Thom McDade, Julienne Rutherford, Marco Aiello, Jared Bragg, and Aryeh Jacobs for valuable discussion and comments; Yarrow Axford for paleoclimate advice and related citations; Ricardo Godoy for econometrics consultations and discussions; David Serre and colleagues for sharing unpublished allele frequencies from the HGDP-CEPH samples; Sarahjit Mastana for sharing the digital dataset from his worldwide \(\text{APOE} \) analysis; Robert Mahley for sharing unpublished allele frequencies by region in Turkey; Svetlana Borinskaya for sharing unpublished data; Kurt Spokas for his fine climate software and support; Kevin Jacobs for help with glu; Nick Patterson for help with Eigenstrat; and Jim DeVona for his customization of Kurt Spokas’s software and programming the batch USGS elevation query module. DTAE is funded by a...
LITERATURE CITED

Gaynor JW, Wernovsky G, Jarvik GP, Bernbaum J, Gerdes M, Zackai E, Nord AS, Clancy RR, Nicolson SC, Spray TL. 2007. Patient characteristics are important determinants of neurodevelopmental outcome at one year of age after neonatal and...

