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Objectives: Fetal exposure to elevated maternal cortisol can permanently modify hypothalamic–pituitary–adrenal
(HPA) axis function, and thereby have long-term health impacts. Maternal cortisol steadily increases throughout nor-
mal pregnancy, but is abnormally high in preterm deliveries (<37 weeks). Prematurity remains a widespread public
health problem, yet little is known about its potential long-term effects on adult HPA function. Here we test the hypoth-
esis that diurnal cortisol profiles measured in young adulthood will vary based upon an individual’s preterm status.

Methods: Diurnal salivary cortisol profiles, a marker of HPA-axis function, were measured in 1,403 young adults
(ages 21–23 years) participating in the Cebu Longitudinal Health and Nutrition Survey, located in Metropolitan Cebu
City, Philippines.

Results: Males who had been born preterm exhibited lower morning cortisol and non-significantly elevated evening
cortisol, resulting in a more adverse, flatter rate of decline across the day. In contrast, there were no significant differ-
ences by preterm status in cortisol measured at any time of day in females.

Conclusions: These findings point to potential long-term effects of having been born preterm on adult HPA-axis
function, and add to evidence from this and other populations for sex differences in the biological and health impacts of
prenatal stress exposure. Am. J. Hum. Biol. 26:598–602, 2014. VC 2014 Wiley Periodicals, Inc.

INTRODUCTION

There is much evidence that prenatal stress can
“program” durable changes in metabolism, endocrine reg-
ulation, and other characteristics that influence health
later in life (Chadio et al., 2007; Clark, 1998). The stress
hormone cortisol is the major output of the hypothalamic–
pituitary–adrenal (HPA) axis, and fetal exposure to
maternal circulating cortisol is a prime candidate for such
programming effects (Diego et al., 2006; Seckl and
Meaney, 2004; Thayer et al., 2012). The developing fetus
is normally buffered from elevated maternal cortisol by
the placental enzyme 11b-hydroxysteroid dehydrogenase
type 2 (11b-HSD2), which converts active cortisol into
inactive cortisone (Seckl and Holmes, 2007). However,
abnormally high maternal cortisol levels resulting from
stress experienced during pregnancy can overwhelm this
barrier, leading to increased fetal cortisol exposure
(Alexander et al., 2012; Diego et al., 2006; Glover et al.,
2010). Excess fetal exposure to cortisol has been shown to
result in preterm birth (Demendi et al., 2012; Wadhwa
et al., 2004), as well as intrauterine growth restriction
(IUGR), and low birth weight (LBW) (Marsit et al., 2012;
Pike, 2005).

In addition to impacting birth outcomes, changes in pre-
natal cortisol exposure can also alter or “program” HPA-
axis function and lead to other health consequences over
the life course of the offspring. Consistent with this per-
spective, a growing body of research has linked prematur-
ity status, independent of birth weight, to increased risk
of hypertension and cardiovascular disease (CVD) in
adulthood (Cooper et al., 2009; Crump et al., 2011; Dalziel
et al., 2007; Irving et al., 2000; Rotteveel et al., 2008). If
being born premature leads to durable changes in adult
HPA function, this could modify adult health, and might
also alter fetal exposure to cortisol in the grandoffspring

generation, perpetuating an intergenerational pattern of
undesirable health outcomes (Drake and Walker, 2004;
Kuzawa and Sweet, 2009).

Although altered HPA activity is a plausible pathway
linking preterm delivery with later health outcomes, rela-
tively few human studies have evaluated short- and long-
term effects of preterm status on cortisol profiles or HPA
function. A small German study of 8- to 14-year-old chil-
dren reported that individuals born preterm had higher
cortisol upon waking and blunted HPA reactivity (Buske-
Kirschbaum et al., 2007). Brummelte et al. (2011) exam-
ined the salivary cortisol response in prematurely born
infants after a cognitive challenge and mother–infant
interaction. Infants born at extremely low gestational age
(ELGA) (between 24 and 28 weeks) had higher morning
basal cortisol and blunted HPA reactivity compared with
infants born at very low gestational age (VLGA) (between
29 and 32 weeks) and full-term infants. Similarly,
18-month-old infants born ELGA had significantly higher
basal cortisol compared with full-term infants (Grunau
et al., 2007). In the only study of adult subjects that we
are aware of, IUGR, rather than prematurity, was found
to predict higher cortisol metabolite excretion in females
from Scotland, while the premature group (without
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IUGR) showed lower than normal cortisol metabolite
excretion (Walker et al., 2002).

Here we seek to clarify the possible impact of preterm
delivery on adult HPA-axis function. Data were gathered
from young adult participants in the Cebu Longitudinal
Health and Nutrition Survey (CLHNS), a study that has
followed a birth cohort living in Metropolitan Cebu City,
Philippines from birth into adulthood. We describe diur-
nal cortisol patterns, and the cortisol awakening
response, and evaluate whether they vary according to
preterm status. Prior studies report evidence for sex dif-
ferences in the effects of poor birth outcomes on HPA func-
tion (Grunau et al., 2010; Walker et al., 2002), and we
have previously reported evidence for sex differences in
the effect of maternal cortisol on offspring fetal growth
rate in this population (Thayer et al. 2012). Thus, we also
evaluated whether any relationships between prematur-
ity and adult HPA function varied among males and
females.

METHODS

Study population

Data come from the CLHNS, a longitudinal survey of
3,080 singletons whose mothers were recruited during
pregnancy between 1983 and 1984 in Metropolitan Cebu
City, Philippines (Adair et al., 2011). The present analysis
focuses on samples and data collected in 2005 among the
adult offspring of these pregnancies. Individuals with
abnormal sleep–wake cycles, such as shift workers, often
have altered diurnal cortisol rhythms (Weibel et al.,
1996). To avoid confounding by abnormal sleep cycles, we
defined locally relevant exclusion criteria based upon the
distributions of wake times, bedtimes, and total hours of
sleep, and choosing cut points that (a) were logically out-
side the bounds of typical wake times and bedtimes and
(b) did not include large numbers of observations, thereby

confirming that these particular sleep patterns were
unusual. Following from this analysis, our sample was
limited to participants reporting waking between 3 am
and 3 pm, going to sleep between 4 pm and 4 am, sleeping
for at least 4 hours, and staying awake for at least 8
hours. Women who reported being pregnant during the
2005 interview, and those who retrospectively were
deemed to be pregnant in 2005 (using 2007 reproductive
histories), were excluded due to pregnancy-related hormo-
nal changes known to affect cortisol profiles. The final
analysis sample included 1,403 male and female offspring
(802 and 600, respectively) of the original cohort. This
research was conducted under conditions of written
informed consent, and with approval of the Institutional
Review Boards of the University of North Carolina
(Chapel Hill), Northwestern University (Evanston, Illi-
nois), and the Office of Population Studies Foundation
(Cebu, Philippines).

Anthropometric measurements, such as height and
weight, were obtained using standard techniques. Gesta-
tional age was estimated based upon the day of the moth-
er’s last menstrual period in the baseline survey, and
trained nurses performed Ballard maturational assess-
ments if pregnancy complications occurred or if the
infant’s birth weight was lower than 2.5 kg. Preterm birth
was defined as delivery before 37 weeks of gestation.
Although maternal cortisol levels during pregnancy are of
interest with regard to preterm birth and fetal program-
ming, as evidenced by the findings reviewed above, mater-
nal pregnancy cortisol measures were not obtained during
the baseline survey in 1983, and thus are not available for
this analysis.

Questionnaires were used to collect data on other indi-
vidual, household, and community variables during in-
home interviews. Household crowding score was defined
as the number of people living in the household divided by
the number of rooms. A household assets scale was

TABLE 1. Characteristics of CLHNS mothers and index childrena

Male (n 5 802) Female (n 5 601)

Term male Preterm male Term female Preterm female
(n 5 669) (n 5 133) (n 5 519) (n 5 82)

Mother (1983)
Age (years) 26.4 (5.8) 27.4 (6.6)� 26.7 (5.8) 27.0 (6.7)
Highest grade achieved 7.5 (3.7) 7.5 (3.7) 7.7 (3.7) 6.9 (3.3)�
Household income (pesos) 297 (625) 252 (269) 276 (366) 285 (316)

Offspring at birth (1983–1984)
Birth weight (g) 3066 (400) 2838 (531)* 3038 (396) 2820 (468)*
Gestational age (weeks) 39.4 (1.4) 35.3 (1.4)* 39.6 (1.5) 35.4 (1.3)*

Adult offspring (2005)
Age (years) 21.5 (0.3) 21.5 (0.3) 21.5 (0.1) 21.5 (0.3)
Height (cm) 163.2 (5.7) 162.0 (6.8)* 151.4 (5.5) 150.7 (5.6)
BMIb (kg/m2) 21.0 (2.9) 21.2 (3.0) 20.3 (3.1) 20.3 (3.5)
Highest grade achieved 10.5 (3.9) 10.1 (3.9) 11.8 (3.2) 11.0 (3.7)*
Household income (pesos) 552 (623) 544 (1472) 621 (884) 547 (891)

Offspring cortisol (2005)
Waking cortisol (mmol/L) 7.2 (4.5) 6.4 (3.3)* 7.8 (3.8) 7.7 (3.9)
30 minutes after waking cortisol (mmol/L) 9.2 (5.4) 8.9 (4.3) 10.0 (5.0) 9.9 (5.9)
Evening cortisol (mmol/L) 2.2 (2.7) 2.3 (2.4) 1.9 (2.2) 2.4 (2.7)�
Cortisol awakening response (mmol/L) 2.0 (4.8) 2.5 (4.2) 2.2 (5.0) 2.2 (5.5)
Slope of diurnal cortisol decline (mmol/L/hours) 20.32 (0.31) 20.26 (0.26)* 20.37 (0.25) 20.35 (0.26)

aMean (SD) for continuous variables.
bBody mass index.
cGestational age at birth less than 37 weeks.
�P<0.1; *P< 0.05 term versus pre-term (two-tailed T-test).
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defined based on whether the family had electricity,
owned their own home, had an air conditioner, refrigera-
tor, TV, a vehicle, or other appliances (Adair et al., 2011).
Self-reported stress level was collected at the time of
saliva collection using a Likert scale ranging from 1 to 5.

Cortisol measurement

Three saliva samples were collected from each partici-
pant: before bed, immediately upon waking the following
morning, and 30 minutes after waking. Participants were
instructed not to eat, drink, or brush their teeth for at least
30 minutes before sample collection. Cortisol was meas-
ured in duplicate by a laboratory in Trier, Germany, using
a time-resolved immunoassay with fluorometric detection
(DELFIA). The intra- and inter-assay coefficients of varia-
tion (CVs) were between 4.0% and 6.7%, and 7.1% to 9.0%,
respectively. Samples with CVs over 12% were rerun. The
slope of the diurnal decline in cortisol was defined as the
difference in cortisol measurements at waking and eve-
ning, divided by the elapsed time. Cortisol awakening
response (CAR) was defined as the difference in cortisol
level between the waking and 30 minutes after waking
samples (Adam and Kumari, 2009).

Statistical analysis

All statistical analyses were conducted using Stata 12.0
(College Station, TX). Differences between preterm and
term individuals were first analyzed separately for males
and females using one-tailed T-tests. We subsequently
evaluated whether prematurity status predicted cortisol
outcomes using a series of regression models (Tables 2 and
3). Analyses began with a base model relating prematurity
to each cortisol outcome (waking cortisol, evening cortisol,
CAR, and diurnal cortisol slope) and were only adjusted for
time of saliva collection. Household income, assets, crowd-
ing score, and self-reported stress at the time of cortisol
measurement were added to evaluate potential confound-
ing influences. In addition, because cortisol is a metabolic
hormone that has been shown to relate to current nutri-

tional status and measures of developmental nutrition
(Power et al., 2006), we also considered the potential con-
founding influence of recent and chronic nutritional status
as indexed using standing height and the uncorrelated
measure of body mass index (BMI). Finally, to clarify if the
relationship between prematurity and adult cortisol was
due to small birth size, rather than term status, birth
weight was added to the adjusted model.

RESULTS

Characteristics of CLHNS mothers and their offspring
are reported in Table 1. Males born premature were sig-
nificantly shorter as adults than those born full term.
Mothers of preterm males were, on average, about a year
older than mothers of term-born males, while females
born preterm had completed fewer years of school (both
P< 0.1).

Diurnal cortisol profiles for both males and females
showed the expected pattern of a high waking value and a
rise during the 30 minutes after waking, before declining
across the day (Table 1). Prematurely born males had sig-
nificantly lower waking cortisol (P< 0.039) and attenu-
ated diurnal cortisol decline from waking to bedtime
(P< 0.035) compared to term-born males. In contrast, the
only difference in unadjusted cortisol measures among
females was borderline elevated evening cortisol in pre-
term compared to term-born females (P< 0.096).

A series of regression models considering potential con-
founding influences and pathways were used to evaluate
whether prematurity predicted adult cortisol patterns
(Tables 2 and 3). After accounting for saliva collection
time, it was found that, among males, being born prema-
ture was borderline significantly associated with lower
waking cortisol (P< 0.072) and non-significantly elevated
evening cortisol, yielding a significantly attenuated slope
of diurnal cortisol decline (P<0.032). These relationships
were not substantially changed after further adjusting for
birth weight. In females, there were no significant or bor-
derline significant differences in adult HPA measures by

TABLE 2. Regression models with preterm status as a predictor of diurnal cortisol measurements in males

Unadjusted modela Adjusted modelb Adjusted 1 BW modelc

b (SE) P-value b (SE) P-value b (SE) P-value

Waking cortisol (mmol/L) 20.10 (0.06) 0.122 20.11 (0.06) 0.072 20.11 (0.06) 0.094
Evening cortisol (mmol/L) 0.11 (0.09) 0.192 0.11 (0.09) 0.216 0.13 (0.09) 0.144
Cortisol awakening response (mmol/L) 0.57 (0.45) 0.202 0.52 (0.45) 0.247 0.46 (0.46) 0.313
Diurnal cortisol slope (mmol/L/hours) 0.06 (0.03) 0.035 0.06 (0.03) 0.032 0.07 (0.03) 0.026

aAdjusted only for times of cortisol measurement.
bAdjusted for times of cortisol measurement, current BMI, height, household income, assets, crowding, and self-reported stress on day of saliva collection.
cAdjusted model 1 individual’s birth weight.

TABLE 3. Regression models with preterm status as a predictor of diurnal cortisol measurements in females

Unadjusted modela Adjusted modelb Adjusted 1 BW modelc

b (SE) P-value b (SE) P-value b (SE) P-value

Waking cortisol (mmol/L) 20.02 (0.06) 0.719 20.01 (0.06) 0.821 20.01 (0.06) 0.905
Evening cortisol (mmol/L) 0.15 (0.11) 0.174 0.12 (0.11) 0.287 0.13 (0.11) 0.255
Cortisol awakening response (mmol/L) 20.003 (0.60) 0.996 0.13 (0.61) 0.829 20.06 (0.61) 0.918
Diurnal cortisol slope (mmol/L/hours) 0.02 (0.03) 0.537 0.01 (0.03) 0.722 0.003 (0.03) 0.912

aAdjusted only for times of cortisol measurement.
bAdjusted for times of cortisol measurement, current BMI, height, household income, assets, crowding, and self-reported stress on day of saliva collection.
cAdjusted model 1 individual’s birth weight.
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preterm status, with or without adjustment for potential
confounding influences or for birth weight.

DISCUSSION

We hypothesized that individuals born preterm, who as
a result likely experienced altered cortisol exposure in
utero, would have altered circadian cortisol dynamics in
adulthood. The evidence reported here supports such an
effect, but only among male participants. Following
adjustment for potential confounding factors, the diurnal
cortisol slope was significantly flatter among males born
preterm. The altered diurnal cortisol profile in preterm
males suggests that preterm delivery could have durable
effects on HPA-axis function, potentially affecting health
outcomes over the life course. These findings are similar
to those of another prospective cohort study demonstrat-
ing that individuals born premature or with extremely
LBW had elevated evening and total cortisol levels (Gus-
tafsson et al., 2010).

The findings reported here add to evidence that prenatal
conditions, as indexed indirectly by preterm birth, can
have sex-specific effects on adult HPA function and health.
Although prior studies of the long-term effects of prema-
turity status on HPA function have been few, one small
study reported evidence for more pronounced effects of
adverse birth outcomes on HPA-axis function in adult
females (Walker et al., 2002). In contrast, a study in Can-
ada found evidence for lower cortisol reactivity to immuni-
zation in individuals born preterm, but with effects only
significant for males (Grunau et al., 2010). At Cebu, we
have previously reported evidence for greater prenatal sen-
sitivity, and long-term biological and health effects of early
environments, among males. For instance, we recently
reported that women with higher evening cortisol in adult-
hood tend to give birth to lower birth weight offspring,
with effects roughly twice as strong in male offspring
(Thayer et al., 2012). These findings, along with evidence
for a stronger male than female relationship between lower
birth weight and adult CVD risk factors in Cebu (e.g.,
Adair et al., 2001; Kuzawa and Adair, 2003), help paint a
consistent picture in which males are more sensitive to
prenatal stress, which manifests as more pronounced long-
term changes in endocrine regulation and CVD risk.
Enhanced male sensitivity to environmental conditions
has also been reported in research in comparative and evo-
lutionary biology (Lindstr€om, 1999), and may reflect sex
differences in developmental sensitivity tracing to differen-
ces in sexual size dimorphism or life history strategy (see
Kuzawa 2005, 2007; Stinson, 1985; Sheldon et al., 1998).
From an applied perspective, these findings may indicate
that more variability in male adult health outcomes ulti-
mately traces to prenatal conditions. In addition, if the
stress of prematurity has relatively attenuated long-term
effects on adult phenotypes in females, this may indicate a
reduced tendency for preterm-delivery to influence the
intergenerational transmission of health disparities
through the gestational environment in this population
(e.g., Drake and Walker, 2004; Kuzawa and Sweet, 2009).
However, prenatally programmed differences in maternal
cortisol reactivity during pregnancy or other epigenetic
modifications, which we did not evaluate here, could still
contribute to such effects (Matthews and Phillips, 2012).

There were several limitations to our study. Notably,
cortisol values at each time of day were measured by a

single sample, whereas collecting samples across multiple
days and using average values would enhance measure-
ment reliability. This limitation in measurement reliabil-
ity, however, was offset by a large sample size, which
greatly exceeds that of most studies in other populations.
Nonetheless, it is possible that some of the relationships
that were borderline or that trended toward significance,
such as the marginally higher evening cortisol among pre-
term males, would have reached statistical significance
had we measured cortisol across multiple days. Because
none of the relationships approached significance in
females, it seems unlikely that our finding of no differen-
ces by preterm status among females would be altered by
enhanced measurement reliability.

In sum, we found that males born preterm have altered
circadian cortisol profiles in adulthood compared with
term-born males, as reflected in lower morning values
and a flatter diurnal slope. Flatter diurnal cortisol profiles
have been associated with various negative health out-
comes, such as metabolic syndrome, hypertension, CVD,
cognitive and psychiatric conditions, immune suppres-
sion, impaired executive function, and physical perform-
ance (Blair et al., 2005; Gardner et al., 2011; Kumari
et al., 2011; Sephton et al., 2000; Shirtcliff and Essex,
2008; Spiegel, 2011), underscoring the need to identify the
developmental antecedents of these patterns. Our find-
ings point to prematurity as a potential cause of altered
diurnal HPA rhythms in adulthood, with more pro-
nounced impacts on male biology and health.
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